Fast-Charging Batteries

Professor Yair Ein-Eli
Professor Yair Ein-Eli

Fast charging is considered to be a key requirement for widespread economic success of electric vehicles. Current lithium-ion batteries (LIBs) offer high energy density, but while they enable sufficient driving range, they take considerably longer to recharge than traditional vehicles. Multiple properties of the applied anode, cathode, and electrolyte materials influence the fast-charging ability of a battery cell.

In a review published this month in the high impact Journal Advanced Energy Materials, an international team of researchers considers in detail the physicochemical basics of different material combinations, and identify the transport of lithium inside the electrodes as the crucial rate-limiting steps for fast-charging. The group* headed by Professor Yair Ein-Eli and graduate student Ms. Natasha Ronit Levy from the Technion Department of Materials Science and Engineering, and Professor Jürgen Janek and Dr. Manuel Weiss from Giessen University (Institute of Chemical Physics, Germany), identified that lithium-ion diffusion and migration within the active materials inherently slows down the charging process and impose high resistivity.

In addition, concentration polarization by a slow lithium-ion transport within the electrolyte phase in the porous electrodes also limits the charging rate. Both kinetic effects are responsible for lithium plating observed on the graphite anodes. Such plating of metallic lithium may lead to a dangerous thermal runaway, resulting in explosion and fire. The conclusions drawn by the researchers from potential and concentration profiles within LIB cells are complemented by extensive literature surveys on anode, cathode, and electrolyte materials. They analyzed advantages and disadvantages of typical LIB materials and offered suggestions for optimum properties on the material and electrode level for fast-charging applications.

Ronit Natasha Levy
Ronit Natasha Levy

* The research groups that took part in the review work were part of the 4th German-Israel Batteries School held in Berlin in 2019: from Israel – Prof. Yair Ein-Eli [Technion] and Prof. Doron Aurbach [Bar-Ilan University]; From Germany – Prof. Jürgen Janek [Giessen University], Prof. Martin Winter [Münster University], and Prof. Margaret Wohlfahrt-Mehrens [Energy Research Center, Ulm]. Financial support was provided by the following entities and foundations: the German Federal Ministry for Education and Research (BMBF) within GIBS 4 bi-national workshop, the Federal Ministry for Economic Affairs and Energy (BMWi), the Israeli Ministry of Science and Technology (MOST), the Planning & Budgeting Committee/Israel Council for Higher Education (CHE), and Fuel Choice Initiative (Prime Minister Office) within the framework of “Israel National Research Center for Electrochemical Propulsion” (INREP 2) and by the Grand Technion Energy Program (GTEP).

Click here for the paper in Advanced Energy Materials

Towards a Greener Technion

In less than three months, on October 1, 2021, the Technion – Israel Institute of Technology will stop buying disposable utensils. The decision by Technion Executive Vice President & Director General Professor Boaz Golany came after a lengthy research study and a thorough review of the alternatives.

In 2019, the Technion bought more than 2.3 million disposable cups, almost one million disposable teaspoons, and hundreds of thousands of other single-use items. Disposable utensils currently account for approximately 9% of waste on campus, and the present move is intended to reduce the amount of waste and reduce associated expenses.

In 2019, the Technion bought more than 2.3 million disposable cups

In parallel to the CEO’s decision, the Technion will be providing its faculties and units with information on relevant and more environmentally friendly alternatives. Until adequate alternatives are found, the decision excludes cafeterias and small events held in the faculties. It is important to note, however, that even in these cases, the Technion will encourage a shift to reusable plates, cups, and cutlery.

“This is a comprehensive move that encompasses the Technion as a whole, and its implications are far-reaching,” said Prof. Golany. “In the past few years, the Technion has shifted into high gear in all aspects touching upon sustainability. Two important milestones that preceded the present move are the approval of Technion’s Strategic Plan of 2016 and the Technion Comptroller’s Report of 2019, which led to important recommendations related to sustainability. Our handling of these issues integrates research, teachings, and practices, which means that we will be placing special emphasis on promoting additional science-based steps that have the potential to bring about dramatic positive change.”

The move is being led by the Technion’s Sustainability Hub under the academic guidance of Professor Daniel Orenstein, who has authored important research on the issue of sustainability at universities, and the Hub’s coordinator, Dr. Ronit Cohen Seffer.

“Our view of sustainability and material consumption is holistic, and encompasses all potential responses: reduce, reuse and recycle,” said Prof. Orenstein. “There is no doubt that recycling is important, but reuse and reduction are especially important goals because they prevent pollution already in the production phase.” The production phase of disposable utensils is accompanied by emissions of toxic substances and greenhouse gases, and the transportation of the goods is also the source of a great deal of pollution.

“Before making this decision, we studied every aspect of the alternative – the use of reusable utensils – and we recognize that in addition to discontinuing the use of disposables, we must provide instructions on the right way to reduce the environmental impact of the alternative, too,” added Prof. Orenstein. “It is important to place consumption habits in a much broader context, which is the attempt to minimize damage to the environment on all fronts: energy, waste, land pollution, water and air pollution, and others.”

Subscribe to our newsletter

Language Matters

There is a saying that all the world’s knowledge is available at our fingertips – just a quick Google search away. But what happens when users search for information in their own language? For example, when searching for a scientific term, do search engines provide English-, Hebrew- and Arabic-speaking students with the same level of access to quality scientific information? This question is addressed by a new study, conducted at the Technion – Israel Institute of Technology and recently published in Public Understanding of Science.

Clockwise from top left: Professor Ayelet Baram-Tsabari, Kayther Zoubi, Dr. Aviv Sharon, Dr. Eyal Nitzany

The study found that search results for terms in English are of better quality than those provided for equivalent terms in Hebrew and Arabic. Additionally, most of the differences between the languages pertained to pedagogical aspects of quality, that is, the extent to which the content was geared towards young users, rather than the scientific aspects, such as the accuracy of the content. Some of the largest differences between the languages were found for terms related to nutrition and metabolism, such as “carbohydrate,” “protein,” “enzyme,” and “metabolism.”

These findings are based on the top Google Search results presented to users in Israel for 30 basic scientific terms in three languages: Hebrew, Arabic, and English. The terms pertained to three scientific domains: biology, chemistry, and physics. Each search result’s overall quality was determined using scientific criteria, such as content accuracy, the author’s authority, and the use of sources; pedagogical criteria, such as references to everyday life and the quality of audiovisual materials; and criteria specific to online content, such as recency and interactivity.

According to Kawther Zoubi, who conducted the study as part of her masters’ thesis in the Technion’s Faculty of Education in Science and Technology, “these findings help us understand the digital divide and the social factors that affect our ability to develop science literacy. Our understanding of science depends on the environment we live in and the extent to which we have access to quality scientific information. This depends on our proficiency in different languages.”

Professor Ayelet Baram-Tsabari of the Faculty of Education in Science and Technology, who oversaw the study, added that, “The scientific and educational communities must act to mitigate the digital divide. We all have the right to access quality scientific information in our language.”

Click here for the paper in Public Understanding of Science.

Video demonstrating the study:

Cells Expressing Tendon Markers Fuse into Muscles

Researchers at the Rappaport Faculty of Medicine at the Technion – Israel Institute of Technology have made a breakthrough discovery that muscle fibers are of hybrid origins, and their tips have a “fibroblastic, tendon-like property” that arises from fibroblasts’ fusion. The researchers’ findings highlight a mechanism that enables a smooth transition from muscle fiber characteristics towards tendon features that is essential for forming robust muscle tendon junctions (MTJs). The research was recently published in Nature Communications.

Professor Peleg Hasson (right) and doctoral student Wesal Yaseen Badarneh
Professor Peleg Hasson (right) and doctoral student Wesal Yaseen Badarneh

Using innovative techniques for analyzing single cells (scRNAseq), Professor Peleg Hasson and doctoral student Wesal Yaseen Badarneh reexamined the classical view of distinct identities for the tissues composing the musculoskeletal system. They identified a novel cluster of cells, which they termed dual identity cells. These dual identity cells are fibroblast-derived, yet express myogenic transcriptional programs and fuse into the tips of the developing muscle fibers along the muscle tendon junctions, facilitating the introduction of fibroblast-specific transcripts into the elongating myofibers.

Tendons are the connective tissues that connect between the muscles and bones. Consequently, the tendons’ mechanical properties are crucial in order for humans and other vertebrates to bear varying pressures and perform essential movements. When the development of MTJs is damaged, it may result in clinical phenomena including multiple types of muscle diseases. Therefore, understanding the molecular mechanism underlying MTJ development is very important.

Although vertebrate muscles and tendons are derived from distinct embryonic origins, they must interact in order to enable muscle contraction and body movements. It is still not understood how these two distinct tissues, each with its own biophysical and biochemical properties, form robust junctions that are able to withstand contraction forces. Prof. Hasson and his team identified fibroblasts that have switched on a myogenic program facilitating a seamless transition from a muscle fiber characteristic into a tendon-like structure. Their findings suggest that dual characteristics of junctional cells could be a common mechanism for generating stable interactions between tissues throughout the musculoskeletal system.

The research was carried out in collaboration with researchers from the University of Cincinnati College of Medicine and the Cincinnati Children’s Hospital Medical Center. It was supported by the Israel Science Foundation, the Rappaport Family Institute at Technion, Pew Charitable Trusts, and the National Institutes of Health (NIH).

Click here for the paper in Nature Communications

the RNA of LOXL3 in red, that of MYOD in purple and immunostaining of the muscle fibers in green.
Picture: the RNA of LOXL3 in red, that of MYOD in purple and immunostaining of the muscle fibers in green. The RNA of LOXL3 is expressed in the tendon and at the junction of the muscle while that of MYOD is expressed within the muscle. Hence what you see is the junction area, which at least according to the RNA expression model looks very sharp but in fact, there are hybrid cells there.

GTIIT Commencement

The first cohort graduated from the Guangdong Technion Israel Institute of Technology in a moving ceremony held earlier this week in China, where 149 students received their bachelor’s degrees.

הבוגרים בטקס
GTIIT graduates

“GTIIT is the first and only endeavor of its kind in the mutual history of China and Israel,” Technion President Prof. Uri Sivan, who joined the ceremony via videoconferencing, said at the event. “Two ancient nations, which share the values of knowledge, scholarship, and innovation for thousands of years, have bridged across geography and language to create the marvel that we celebrate today. He went on to say that the language of science “bridges geographies and cultures to connect all people for the benefit of humanity. It is this language, that you, dear graduates, have acquired at GTIIT.”

נשיא הטכניון פרופ' אורי סיון מברך את הבוגרים בטקס מחיפה
Technion President Prof. Uri Sivan speaks at the first GTIIT commencement 

Prof. Sivan congratulated the graduates, faculty, and leaders of GTIIT. He thanked Mr. Li Ka-shing, former GTIIT Chancellor Li Jiange, former Technion President Prof. Peretz Lavie, and the Technion Special Envoy to GTIIT, Nobel Laurette Distinguished Prof. Aaron Ciechanover. “The creation and success of GTIIT is the outcome of the work of many, both in Israel and in China,” Prof. Sivan said. “Still, we would not be here today without the profound vision, brilliant leadership, and deep devotion of these individuals to the idea, which is now a living fact.”

Prof. Gong Xingao, Chancellor of GTIIT, greeted the guests, graduates and faculty, and so did Technion faculty members Prof. Dganit Danino, and Prof. David Gershoni. Peleg Lewi, Consul General of Israel in Guangzhou, also spoke at the ceremony.

The Guangdong Technion-Israel Institute of Technology (GTIIT) was inaugurated in China. The project is the result of a historic partnership between the Li Ka Shing Foundation, the Guangdong Provincial Government, the Shantou Municipal Government and the Technion-Israel Institute of Technology.

To read the full story on the GTIIT website, click here

To watch the entire graduation ceremony: 

[su_youtube url=”https://youtu.be/vGxuF3K5-_w” width=”700″ height=”200″]

Photos and video courtesy of the GTIIT Office of News & Public Affairs

‘Technion LIVE’ July 2021

In a nano-optics breakthrough, Technion researchers observed sound-light pulses in 2D materials, using an ultrafast transmission electron microscope. The study, recording for the first time the propagation of combined sound and light waves in atomically thin materials, was published in the prestigious journal Science.

To read the full story and others – from Israel’s first visually impaired doctor to cutting-edge artificial intelligence research, click here.

The Heart of the Matter: Deep Learning in Medicine

Prof. Yael Yaniv
Prof. Yael Yaniv

In recent years, meteoric progress has been made in the world of deep learning, but at the present time, there are virtually no medical products on the shelf that use this technology. Consequently, doctors continue to employ the same tools used in previous decades.

To find a solution to this problem, the research group of Professor Yael Yaniv of the Faculty of Biomedical Engineering joined forces with the research groups of Professors Alex Bronstein and Assaf Schuster of the Taub Faculty of Computer Science. Now, under their joint supervision, research by doctoral students Yonatan Elul and Aviv Rosenberg has been published in Proceedings of the National Academy of Sciences of the United States of America (PNAS). In the article, the authors demonstrate an AI-based system that automatically detects disease on the basis of hundreds of electrocardiograms, which are currently the most widespread technology employed for the diagnosis of cardiac pathology.

Alex Bronstein
Prof. Alex Bronstein

The new system automatically analyzes the electrocardiograms (ECGs) using augmented neural networks – the most prominent tool in deep learning today. These networks learn different patterns by training on a large number of samples, and the system developed by the researchers was trained on more than 1.5 million ECG segments sampled from hundreds of patients in hospitals in different countries.

The electrocardiogram, developed more than a century ago, provides important information on conditions affecting the heart, and does so quickly and non-invasively. The problem is that the printouts are presently interpreted by a human cardiologist, and thus, their interpretation is, by necessity, pervaded by subjective elements. As a result, numerous research groups worldwide are working on the development of systems that will automatically interpret the printouts efficiently and accurately. Moreover, these systems are able to identify pathological conditions that human cardiologists, regardless of their experience, will not be able to detect.

Assaf Schuster
Prof. Assaf Schuster

The system developed by the Technion researchers was built according to requirements defined by cardiologists, and its output includes an uncertainty estimation of the results, indication of suspicious areas on the ECG wave, and alerts regarding inconclusive results and increased risk of pathology not observed in the ECG signal itself. The system demonstrates sufficient sensitivity in providing alerts regarding patients at risk of arrhythmia even when the arrhythmia is not demonstrated in the ECG printout, and the rate of false alarms is negligible. Moreover, the new system explains its decisions using the accepted cardiology terminology.

The researchers hope this system can be used for cross-population scanning for the early detection of those who are at risk of arrhythmia. Without this early diagnosis, these people have an increased risk of heart attack and stroke.

Aviv Rosenberg
Doctoral student Aviv Rosenberg

The study was headed by Prof. Yael Yaniv, director of the Bioelectric and Bio-energetic Systems Laboratory at the Faculty of Biomedical Engineering at the Technion; Prof. Alex Bronstein, director of the VISTA Laboratory at the Taub Faculty of Computer Science; Prof. Assaf Schuster of the Learning at Scale Laboratory (MLL) at the Taub Faculty of Computer Science and co-director of the MLIS Center (Machine Learning & Intelligent Systems); Yonatan Elul, a doctoral student in the laboratories of Professors Bronstein, Yaniv, and Schuster who completed his bachelor’s degree in Biomedical Engineering and his master’s degree at the Faculty of Computer Science at the Technion; and Aviv Rosenberg, a doctoral student in the laboratory of Professors Bronstein and Yaniv who completed his B.Sc. at the Viterbi Faculty of Electrical and Computer Engineering and his M.Sc. at the Faculty of Biomedical Engineering.

The project was sponsored by the Ministry of Science and Technology and the Technion Hiroshi Fujiwara Cyber Security Research Center and the Israel Cyber Directorate.

Click here for the article in PNAS

Yonatan Elul
Doctoral student Yonatan Elul

From Food Waste to Conductive Polymers

ד"ר נדב אמדורסקי
Dr. Nadav Amdursky

The journal Advanced Materials has reported on the success of Technion – Israel Institute of Technology researchers in creating conductors that are relevant to solar energy generation, biomedical engineering, and more using by-products of the food industry that would otherwise be discarded as waste. The technology demonstrated in the article allows for the simple, fast, cost effective, and environmentally friendly production of biopolymers, which include application for electrophysiological signal sensing.

The study was conducted in the Schulich Faculty of Chemistry under the leadership of Assistant Professor Nadav Amdursky, Head of the Biopolymers and Bioelectronics Laboratory, and doctoral students Ramesh Nandi and Yuval Agam. According to Prof. Amdursky, “The current global green trend has not bypassed industry, and numerous groups worldwide are working on new solutions that will limit the pollution caused by the production of synthetic materials and by their very presence. One of the options is, of course, the use of natural materials, and the big challenge is to adapt them to meet needs.”

The two main approaches in environmentally conscious chemistry are environmental chemistry – the creation of environmentally friendly materials; and sustainable chemistry – production based on available degradable materials and energy-efficient processes. The present research integrates the two approaches in an environmentally friendly production process that yields environmentally friendly products in the context of conductive polymers.

Polymers are long chains made up of thousands of building blocks called monomers. Silk, wool and cotton fibers are examples of natural polymers, whereas nylon and PVC are synthetic polymers. Conductive polymers are a subgroup of polymers, and they serve for a vast variety of applications: electronics, energy storage, fuel cells, medicine, and others. These polymers are currently produced using processes that are costly and cause pollution due to the use of derivatives of oil, gas, and fossil fuel.

The alternative proposed by the Technion research team is protein polymers – molecules that are present in different biological tissues such as silk and wool fibers, spider webs, hair, and nails. Here, as mentioned, they are by-products of the food industry that would otherwise be discarded as waste. According to Prof. Amdursky, “The inspiration to use proteins to create conductive polymers originated in the unique function of proteins in nature – they are exclusively responsible for transporting various charge carriers in flora and fauna; for example, in cellular respiration or in photosynthesis in plants.”

הפולימר החדש מעל שיח הרדוף
The new polymer over an oleander shrub

The researchers created transparent polymer films with high conductivity. This film is suitable for biological and biomedical applications since it is non-toxic. It is biodegradable in the human body, and can be stretched to approximately 400% of its original length, without significantly impairing its electrical properties. Its conductivity is among the highest detected in biological materials.

According to Prof. Amdursky, “The production of the film in our research was a one-pot process, spontaneous, inexpensive, fast, energy efficient, and nonpolluting. In the article, we demonstrate the use of the film as ‘artificial skin’ that noninvasively monitors electrophysiological signals. These signals play a meaningful part in brain and muscle activity, and therefore their external monitoring is a highly important challenge.”

Prof. Amdursky emphasizes that since this technology is designed for application and commercialization, “the economic consideration is key, and consequently, it is most important to lower the costs of production processes so that they will yield a product that is competitive, also in terms of price, with petroleum-based polymers, and happily, we have succeeded. This is in addition to the reduction in environmental damage in the production phase as well as during use. The new polymer is fully biodegradable in less than 48 hours, as opposed to synthetic polymers, which are not biodegradable and as result, pollute our planet.”

The research was sponsored by the Gutwirth Fund (Ramesh Nandi was awarded a scholarship), the United States – Israel Binational Science Foundation, the Ministry of Science and Technology, and a PhosAgro/UNESCO/IUPAC green chemistry research grant. The researchers thank the Nancy and Stephen Grand Technion Energy Program (GTEP) for its financial support through the NEVET program, and the Russell Berrie Nanotechnology Institute (RBNI) for the use of the Institute’s research infrastructure.

הדוקטורנטים ראמש ננדי (מימין) ויובל אגם
Doctoral researchers Ramesh Nandi (right) and Yuval Agam

Click here for the paper in Advanced Materials.

Subscribe to our newsletter

Protecting the Unvaccinated

Joint research by the Technion and KSM, Maccabi Health Services’ Research and Innovation Center, has demonstrated that the rapid and extensive vaccination of Israel’s adult population against COVID-19 provided highly substantial protection for the adolescent public – 16 year-olds and younger – who were not eligible to receive the shots until recently. The study, based on an analysis of 1.37 million vaccinated individuals from 246 different communities in Israel, has identified a significant negative association between the vaccination rate in a given area and infection among the unvaccinated (true infection rate) at those young ages, who were not eligible for the vaccination until recently.

The study, which was published in Nature Medicine, garnered worldwide attention, including coverage in the New York Times. The research project was headed by the Technion’s Prof. Roy Kishony, Dr. Idan Yelin, and student Oren Milman of the Faculty of Biology and the Lorry I. Lokey Interdisciplinary Center for Life Sciences and Engineering, in collaboration with experts from KSM (the Kahn-Sagol-Maccabi Research and Innovation Center) headed by Dr. Tal Patalon.

Prof. Roy Kishony

The present study continues and further strengthens the findings of a previous study by the Technion and KSM, which was also published in Nature Medicine. The earlier study demonstrated that the vaccination substantially decreases the viral load after inoculation, and therefore lowers the vaccinated individual’s “personal reproduction number,” i.e. his chances of infecting others. According to Prof. Kishony, “We have now found that those findings are correct, not only on the individual level, but also with regard to the population as a whole. The mass vaccination of the adult Israeli population lowered the reproduction number, and thus substantially protected the infant, child and up to 16-year-old adolescent population, who were not eligible for the vaccination until recently.”

The vaccination rollout in Israel began on December 19, 2020, and within nine weeks almost half the population had received the BNT162b vaccine from Pfizer–BioNTech. The rapid and extensive rollout, which was not uniform everywhere in the country, provided a rare opportunity to examine the effect of vaccination in each community on the community as a whole. The close collaboration between the Technion and Maccabi also enabled the researchers to perform an advanced statistical analysis of a large public – 1.37 million members of Maccabi Healthcare Services, who were vaccinated between December 6, 2020 and March 9, 2021. The data used by the Technion researchers were, of course, anonymous, meaning that they did not include any information on the patient’s identity.

The study was carried out on the basis of a geographic segmentation of the country, in which 246 communities from different geographic regions in Israel were defined. This segmentation was designed to test the association between the vaccination rate at the community level in a particular area and the level of infection among the young population (age 16 and less). As mentioned, the article identifies a robust negative association between the vaccination rate and the risk of infection for unvaccinated members of the community in question.

The study was sponsored by a grant from the KillCorona research grant program. Coordinated by the Israel Science Foundation, the program was established one year ago to encourage research to help flatten the COVID-19 curve.

Laser “Tweezers”

A study conducted in the Technion Faculty of Biology sheds light on the structure and dynamics of chromatosomes. Published in the journal Molecular Cell, the study was conducted by Dr. Sergei Rudnizky under the supervision of Professors Ariel Kaplan and Philippa Melamed.

Each one of the cells in our body contains DNA, which provides the instructions required for our development and function. Astoundingly, a total of two meters of DNA is packaged in each cell’s nucleus, just tens of microns in size, a feat accomplished by packaging the DNA into a compact structure called chromatin. The basic level of chromatin organization is provided by wrapping the DNA around proteins called histones in a spool-like structure that resembles “beads on a string.” Then, more complex structures called chromatosomes are formed with the help of a special histone, known as a “linker histone,” which connects the “strings.”

Packaging of the genome is essential in order for it to fit into the cell, but it also reduces the accessibility to the cellular machines that read the DNA and transcribe the genes. Thus, the distinct packaging at a particular gene will have a huge impact on its expression, in ways that are only beginning to be unraveled. In particular, linker histones are known to play a key role in this organization of the genome, and their malfunctions can lead to serious diseases including cancer and autism, but the most basic questions of how they bind DNA are still unanswered.

באיור: הפינצטה האופטית שמימין מתחילה לפרום את הדי-אן-איי לשני גדיליו. כשהפרימה תגיע לכרומטוזום היא תיעצר על ידי מגעים בין ההיסטונים [בצהוב, ורוד וכחול] והדי-אן-איי, וכך יהיה אפשר לבדוק אם מדובר בכרומטוזום פתוח (למטה מימין) או הדוק (למטה משמאל).
Optical tweezers apply force on DNA, and “unzip” it into two separate strands. Upon reaching the chromatosome the unzipping is halted by contacts of the histone proteins (yellow, pink, blue) with the DNA, revealing whether the chromatosome is in an “open” (right) or “closed” (left) structure.
The lack of understanding of these crucial processes stems from the dynamic nature of linker histones, which makes it challenging to investigate them using conventional methods based on sampling a huge number of molecules simultaneously. In order to overcome this problem, Prof. Kaplan’s lab developed a unique method based on “optical tweezers,” an approach that allows researchers to capture individual chromatin molecules and exert forces on them with the help of a focused laser beam. In these experiments, one strand of DNA is slowly detached from its complementary strand in a manner similar to a zipper being unzipped, through the entire structure of a chromatosome. The principle of the measurement is simple: at points where a histone makes contact with the DNA, even in the weakest way, the zipper gets stuck, and more force needs to be applied to overcome the histone-DNA contact and advance into the structure.

מימין לשמאל: פרופ' אריאל קפלן, ד"ר סרגיי רודניצקי ופרופ' פיליפה מלמד
L-R: Professor Philippa Melamed, Sergei Rudnizky and Professor Ariel Kaplan

Using this approach, Dr. Rudnizky and his coworkers discovered that contacts between histones and DNA are far more extensive than previously known, and that chromatosomes are, in fact, much larger than previously thought. Moreover, they found a surprising flexibility in the structure of linker histones, as two different chromatosome shapes exist: one symmetric and compact, and the second asymmetric and more relaxed. Remarkably, transition between these shapes in an individual molecule can be externally controlled by the transcription machinery itself. This suggests that the cell utilizes the transition between stable and unstable forms of a chromatosome to regulate access to the DNA in a controlled manner. Given the key role played by chromatosomes in maintaining proper expression of our genome, these findings add an important layer to our understanding of the role of chromatin architecture in health and disease.

For the article in Molecular Cell, click here.

AI Leader

Over the years, the Technion has established itself as a leading academic institution in AI. It is currently ranked 15th in the world, with 100 faculty members engaged in areas across the AI spectrum.

The Technion’s efforts to advance the field of artificial intelligence have positioned it among the world’s leaders in AI research and development. CSRankings, the leading metrics-based ranking of top computer science institutions around the world, has ranked the Technion #1 in the field of artificial intelligence in Europe (and of course, in Israel), and 15th worldwide. In the subfield of machine learning, the Technion is ranked 11th worldwide. The data used to compile the rankings is from 2016 to 2021.

One of the innovations that is part of the framework of the Technion’s AI prowess is the Machine Learning and Intelligent Systems (MLIS) research center, which aggregates all AI-related activities.

Today, 46 Technion researchers are engaged in core AI research areas, and more than 100 researchers are in AI-related fields: health and medicine, autonomous vehicles, smart cities, industrial robotics, cybersecurity, natural language processing, FinTech, human-machine interaction, and others. Two leading AI researchers co-direct MLIS: Professor Shie Mannor of the Andrew and Erna Viterbi Faculty of Electrical and Computer Engineering and Professor Assaf Schuster of the Henry and Marilyn Taub Faculty of Computer Science.

פרופ' שי מנור
Professor Shie Mannor

According to Prof. Mannor, “for years, the Technion has maintained its position as the leading research institute in Israel and Europe in core AI areas. The Technion has a unique ecosystem that includes tens of researchers from various faculties, research centers, and a number of undergraduate and graduate programs in the field.”

“All fields of science, technology, and engineering at the Technion have been upgraded in recent years, applying Technion knowledge in AI fields,” said Prof. Schuster, “Most include components based on information processing and machine learning. Furthermore, the Technion views the dissemination of its acquired knowledge as a mission of national importance for commercial sector. In that regard, the Technion operates in close cooperation with the technology sector in Northern Israel and within its partnership with the prestigious EuroTech Universities Alliance. These partnerships in Israel and worldwide link AI research at the Technion to the vanguard of activity in this field.”

The MLIS center strives toward four main goals: (1) establishing the Technion as a top-5 university in the field of AI worldwide; (2) pooling resources, recruiting researchers, and students from all Technion departments to advance and conduct joint research in the field; (3) connecting Technion researchers with relevant parties in the industry, especially technology companies and other organizations that generate Big Data; (4) Establishing close research collaboration with other prominent research institutes in the AI field in Israel and worldwide.

פרופ' אסף שוסטר
Professor Assaf Schuster

In May 2021, the Technion entered a long-term collaboration with American software giant PTC, under which the company will transfer its Haifa research campus to the Technion, to advance joint research in AI and manufacturing technology. PTC joins several other organizations that collaborate with the Technion in these fields, among them the technological universities of Lausanne (Switzerland), Eindhoven (Netherlands), Munich (Germany), and the Paris Polytechnique (France) in Europe, as well as Cornell Tech, home of the Jacobs Technion-Cornell Institute, Waterloo University, and Carnegie Mellon University, which operates the largest center for AI and robotics in the United States.

En Route to Personalized Medicine

In what can be regarded as a significant breakthrough, researchers at the Technion – Israel Institute of Technology, together with their overseas partners, present novel technologies aimed at decoding the protein profile of single cells. A perspective paper, detailing the international group’s latest methods developments in the area, was recently published in the prestigious journal Nature Methods.

Identifying the genetic profile of single cells has important value to both research and practical application, and achievements in this field can help understand the great variability between different cells. However, unlike successes in studying the genetic profile of a single cell, decoding the protein profile of a single cell has yet to be realized. This would be a significant milestone, from both research and clinical perspectives, since an accurate sensing of proteins levels can help diagnosing diseases at an early stage when their levels are too low to be detected by current tests. For example, such mapping may help in distinguishing among different tumors and enable treatment to be optimally tailored to the specific case.

באיור: תיאור התהליך המאפשר זיהוי חלבונים ברמת המולקולה הבודדת (משמאל לימין) באמצעות ננו-חרירים. החלבונים המיועדים לבדיקה עוברים סימון מיוחד באזורים ספציפיים ולאחר מכן עוברים דרך ננו-חריר המואר באמצעות לייזר. כך מתבצעת קריאה של הסימונים השונים. האות האופטי שמתקבל מכל חלבון נקרא ונאסף ובסופו של דבר עובר לרשת נוירונים שמזהה את החלבון בסבירות הגבוהה ביותר.
Illustration: Description of the process that enables the identification of proteins in individual molecules (left to right) using nanopores. The proteins designated for testing undergo special labelling in certain amino-acids and then pass through the laser-illuminated nano-aperture. The optical signal obtained from each protein is read and collected and eventually passes to a network of neurons that recognize the protein identity, with a single-molecule precision.
פרופ' עמית מלר
Prof. Amit Meller

The collaborative manuscript presented here was led by Professor. Chirlmin Joo (Delft University), Dr. Javier Alfaro (University of Gdansk), and Professor. Amit Meller of the Faculty of Biomedical Engineering (Technion), after a successful international conference SMPS19 (Single-Molecule Proteins Sequencing), a successful international conference organized by Prof. Meller and held in Jerusalem in 2019.

In the paper, the researchers describe the future technologies of protein sequencing and identification on the individual molecular level, alongside innovations in existing methods such as mass spectrometry. One such example is technology developed in Prof. Meller’s laboratory at the Technion, involving nanometric sensors that include nano-channels and nano-pores to allow the direct sensing of individual proteins (see illustration).

ד"ר קסנדר ון קוטן
Dr. Xander van Kooten

The proteins are labelled with fluorescent dyes, and as they flow through the sensor, a sophisticated optical system can read the markers. The optical signal is processed and analyzed using a deep learning-based system – which has also been developed in the lab – enabling the protein to be identified. This, and other such technologies will lead to a deeper understanding of biological processes and the development of highly sensitive medical tests that will enable the early diagnosis of a variety of diseases.

The Technion study led by Prof. Amit Meller also included a postdoctoral fellow Dr. Xander van Kooten and a Ph.D. student Shilo Ohayon, in the Faculty of Biomedical Engineering. The study has been supported by the European Union (the ERC Grant from the European Commission’s Horizon 2020 program for EU research), the Israeli Science Foundation (ISF), and the Azrieli Fellowship Program.

שילה אוחיון
Shilo Ohayon