CAMILA – Rocket Engine Ingenuity

Across the Universe – Rocket Engine Innovation

It takes energy to keep a satellite positioned in space, or to move a spacecraft to it’s destination. It also takes ASRI brainpower from Technion – Israel Institute of Technology.

Testing the Camila at ASRI’s Rocket Propulsion Lab.

When the iron curtain came down, a scientific opportunity emerged. World-class scientists were among the millions of Russians that were free to find America. Empowered by cultural diversity and open to newcomers, Technion’s Asher Space Research Institute (ASRI) seized the moment and recruited Prof. Alexander Kapulkin. Today, he is the mastermind of the world’s most efficient, fast and effective rocket engine, the CAMILA.

Downstairs at ASRI, the future of earth and space science is being born. In the new Rocket Propulsion Lab, suspended within a huge stainless steel vacuum cylinder, the hand-sized electric-propulsion hall thruster CAMILLA is undergoing tests. The lab took form through the combined skills of three immigrants from the former USSR. Kapulkin, his student from the University of Dnipropetrovsk in Ukraine Maxim Rubinovitch, and mechanical designer Dr. Vladimir Balabanov, who came to Israel 20 years ago from Omsk.CAMILA includes a revolutionary fuel-delivery design and an innovative magnetic field configuration that propels the engine faster. This innovation consumes less fuel, thus increasing engine efficiency. The impact will be less size, weight, and cost of small satellites. The new lab is set to be the only plasma process monitoring facility in Israel. CAMILA? The three scientists hope to experience her Sputnik moment within the next two years, when she will take her maiden voyage to propel her first microsatellite through space.

 

Patent Details: patents@tx.technion.ac.il

Highly efficient spacecraft thruster – CAMILA
Ref. MAE-0877
Background:
Hall Thrusters (HTs) are used in spacecraft to generate thrust by emitting particles at high velocities. Their low propellant consumption per unit of force allows them to be used for much longer times than rocket thrusters, which are short-lived. HTs work by ionizing gas particles in an anode cavity. The newly created ions exit the cavity and are drawn towards the opposite end of an acceleration channel by a strong electric field. When particles exit the channel at high speed into space, net thrust is induced on the channel. But, HTs suffer from relatively high power requirements. This is mainly due to the fact that some ‘slow’ ions collide with the anode walls, and do not exit the anode cavity into the acceleration channel.
Method:
Our technology increases Hall Thruster efficiency by significantly reducing the number of ‘slow ions’. Two major modifications contribute to the effect – unique geometry and an additional magnetic field. The acceleration channel is shaped like a cylinder, which has a low surface-to-volume ratio. This way, ions have higher chances of escaping the channel without colliding with the anode surface. The second modification is the addition of a longitudinal magnetic field inside the anode. This field lowers the electrical potential on the central cylindrical surface in respect to that of the anode, practically drawing ions away from the anode. As a result, the phenomenon of ‘slow ion waste’ is nearly eliminated. The added magnetic field can be generated by permanent magnets, which do not require additional power to operate.
Advantages:
• More than 100% increase in thrust without increase in propellant consumption
• Minute design and manufacturing modifications required 
• No additional power requirements in permanent magnet implementation
Applications:
Satellite and other spacecraft propulsion
Technological Keywords: Plasma, ion, thruster, hall, effect, electrons, electric, magnetic, field, xenon, gas, anode, cathode, accelerator, coil, pole, impulse
Market Keywords: space, satellite, rocket