Diseases and conditions where stem cell treatment is promising or emerging. Source: Wikipedia |
Pancreatic Tissue for Diabetes
Prof. Shulamit Levenberg of the Technion, who has spent many years trying to create replacement human organs by building them up on a “scaffold,” has created tissue from the insulin-producing islets of Langerhans in the pancreas surrounded by a three-dimensional network of blood vessels.The tissue she and her team created has significant advantages over traditional transplant material that has been harvested from healthy pancreatic tissue.
“We have shown that the three-dimensional environment and the engineered blood vessels support the islets – and this support is important for the survival of the islets and for their insulin secretion activity”, says Prof. Levenberg of the Department of Biomedical Engineering.
In the Bones
Stem Cell Proliferation
““These are our next generation of scientists and Nobel Laureates,” says Prof. Dror Seliktar, of the Department of Biomedical Engineering. “The future of the Technion relies on that.”
Seliktar and his research team at the Lokey Center for Biomaterials and Tissue Regeneration at Technion is working on a new material for the mass production of stem cells to make their commercial use viable on an industrial scale.
“In the biotechnology industries, there is an inherent need for expanding populations of stem cells for therapeutic purposes,” says Seliktar, who has published over 50 papers in the field, won over 14 awards and launched one of Israel’s promising biotech startups, Regentis Biomaterials.
Prof. Joseph Itskovitz-Eldor of the Faculty of Medicine was on the international team that in 1998 first discovered the potential of stem cells to form any kind of tissue and pioneered stem-cell technology. The breakthrough garnered headlines around the world. He is the Director of the Technion Stem Cell Center.