נשיא חדש לטכניון

נשיא הטכניון, פרופ’ אורי סיון, שנכנס לתפקידו היום: “האוניברסיטאות יצטרכו להמציא את עצמן מחדש”

הערב התקיים בטכניון טקס חילופי נשיאים, שבו צוינה כניסתו של פרופ’ אורי סיון לתפקידו כנשיא הטכניון ה-17. הוא מחליף את פרופ’ פרץ לביא, שסיים תקופת כהונה בת עשור.

הטקס התקיים במעמד שר החינוך הרב רפי פרץ, ראש העיר חיפה ד”ר עינת קליש רותם, חתן פרס נובל בכימיה פרופ’-מחקר אהרן צ’חנובר, יו”ר קורטוריון הטכניון מר סקוט לימסטר, יו”ר הוועד המנהל של הטכניון מר גדעון פרנק, נשיאי הטכניון לדורותיהם, חברי הנהלת הטכניון וחברי סגל.

פרופ’ סיון סיפר בטקס על הוריו, שעלו ב-1936 לארץ ישראל כדי ללמוד בטכניון לאחר שאוניברסיטאות באירופה הלכו ונסגרו בפני יהודים, ואמר כי לפיכך מינויו לנשיא סוגר מעגל אישי עבורו. הוא הוסיף כי “הטכניון היום חזק מאי פעם, ועלינו לנצל מצב זה כדי לבצע רפורמות מרחיקות לכת במבנה המחקרי שלו, בתוכני החינוך, בשיטות ההוראה ובחיים המשותפים עם התעשייה. האתגרים הגדולים של המאה ה-21 – בריאות האדם, אנרגיה, סביבה, קיימות, יצור מתקדם, חינוך – לא יֵענו במסגרות חד-דיסציפלינריות, והרלוונטיות שלנו תיבחן ביכולתנו לשלב את כלל הדיסציפלינות וליצור את הסינרגיה ההכרחית להתמודדות עם האתגרים הניצבים בפני האנושות. גם החינוך ישתנה ללא היכר. הידע כולו נמצא במרחק לחיצת מקש והאוניברסיטאות יצטרכו להמציא את עצמן מחדש בעולם בו הידע נגיש לכול ומתעדכן בקצב הולך וגדל.” הוא הוסיף כי “ערכים אוניברסליים של שוויון, פלורליזם, סובלנות, חופש המחשבה וחופש הדיבור, רדיפת האמת ודחיית השקר הם נשמת אפה של האקדמיה.”

שר החינוך הרב רפי פרץ אמר בטקס: “אני מבקש להודות לכם, אנשי הטכניון, על כל הברכה שאתם מביאים לעם ישראל ולמדינת ישראל. העתיד שלנו טמון במחקר ובפיתוח, במדעים המדויקים, בטכנולוגיה, ברפואה ובאדריכלות, ואתם הקטר שמוביל את כל זה. במיוחד בימים אלה, שבהם הכל מתנדנד, יש חשיבות עצומה בקיום איים של ודאות, מצוינות והמשכיות כמו הטכניון.”

 

נשיא הטכניון היוצא פרופ’ פרץ לביא אמר: “הצבתי לעצמי שלושה יעדים מרכזיים: גיוס מסיבי של חברי סגל צעירים מהשורה הראשונה; שיפור דרמטי באיכות ההוראה וביחס לסטודנטים; והפיכת הטכניון לאוניברסיטה גלובלית.

“בהקשר הגלובלי אכן הרחבנו את השפעת הטכניון, ואין ספק ששני השיאים בתהליך זה הם הקמפוסים החדשים בסין ובניו יורק. בהקשר של שיפור ההוראה זינק הטכניון מהמקום האחרון למקום הראשון מבין האוניברסיטאות בישראל בשביעות רצונם של הסטודנטים מאיכות ההוראה. גם בגיוס חברי סגל חדשים רשמנו הצלחה עצומה: כ-270 חברי סגל חדשים הצטרפו לשורות הטכניון בעשור האחרון, והם הפכו אותו לטכניון צעיר יותר ויותר מכך – מצוין יותר. על כך מעידים המאמרים המדעיים, מענקי המחקר והפרסים היוקרתיים.”

חתן פרס נובל בכימיה, פרופ’-מחקר אהרן צ’חנובר, אמר כי “יתכן שהטכניון אינו האוניברסיטה הטובה בעולם, אבל הוא המוסד שמדינת ישראל חבה לו את קיומה. הטכניון אחראי לשני העמודים החשובים ביותר שעליהם ניצבת המדינה: הביטחוני והכלכלי. על הטכניון להמשיך להוביל את המדע והטכנולוגיה אך גם להציב לנגד עיניו את ההיבט האתי, כין אין המצאה טכנולוגית שאין לה השלכות בתחום האתי.”

 

ראש העיר חיפה ד”ר עינת קליש רותם הודתה לפרופ’ לביא על פועלו בשם העיר חיפה ותושביה והעניקה לו תעודת הוקרה שבה נכתב: “בהערכה על טביעות אצבעותיך שהותרת בפעילות ענפה רבת-שנים בקידום הטכניון למוסד המוביל בתחומו בארץ ובעולם”.

 

פרופ’ סיון, 64, תושב חיפה, נשוי ואב לשלושה, שירת כטייס בחיל האוויר. הוא הצטרף לסגל הפקולטה לפיזיקה בטכניון ב-1991 ועומד בראש הקתדרה ע”ש ברטולדו באדלר. מחקריו לאורך השנים התפרסו על פני מגוון רחב של נושאים ובהם פיזיקה של מערכות קוונטיות קטנות ורתימה של ביולוגיה מולקולרית לבנייה עצמית של התקנים אלקטרוניים זעירים. הוא מילא שורה של תפקידים בכירים בטכניון ובמדינת ישראל. בשנים 2010-2005 הוא הקים וניהל את מכון ראסל ברי למחקר בננוטכנולוגיה (RBNI). בשנתיים האחרונות הקים פרופ’ סיון את ועדת ההיגוי הלאומית המייעצת לות”ת (הוועדה לתכנון ולתקצוב במועצה להשכלה גבוהה) בנושאי מדע וטכנולוגיה קוונטיים ועמד בראשה.

 

דלק העתיד

פריצת דרך בטכניון: חוקרים פיתחו טכנולוגיה זולה, ידידותית לסביבה ובטוחה יותר להפקת מימן


טכנולוגיית
E-TAC water splitting משפרת את הנצילות האנרגטית של תהליך הפקת מימן ממים לשיא חסר תקדים, 98.7%, ומצמצמת משמעותית את פליטת הפחמן דו-חמצני. חברת הסטארטאפ H2Pro המבוססת על הפיתוח תתרגם אותו ליישום מסחרי

קבוצת המחקר. מימין לשמאל: פרופ' גדעון גרדר, פרופ' אבנר רוטשילד, אביגיל לנדמן וד"ר חן דותן
קבוצת המחקר. מימין לשמאל: פרופ’ גדעון גרדר, פרופ’ אבנר רוטשילד, אביגיל לנדמן וד”ר חן דותן. קרדיט צילום: חן גלילי, דוברות הטכניון

חוקרים בטכניון פיתחו טכנולוגיה חדשנית נקייה, זולה ובטוחה לייצור מימן. הטכנולוגיה משפרת משמעותית את נצילות הפקת המימן – מכ-75% בשיטות המקובלות היום לנצילות אנרגטית חסרת תקדים של 98.7%. המחקר נערך במסגרת תוכנית האנרגיה ע”ש ננסי וסטיבן גרנד בטכניון (GTEP) על ידי פרופ’ אבנר רוטשילד מהפקולטה למדע והנדסה של חומרים ופרופ’ גדעון גרדר מהפקולטה להנדסה כימית יחד עם ד”ר חן דותן והדוקטורנטית אביגיל לנדמן. תוצאות המחקר התפרסמו בכתב העת Nature Energy.

 

האלקטרוליזה התגלתה לפני למעלה מ-200 שנה, ומאז עברה אוסף מצטבר של שיפורים נקודתיים. כעת מציגים חוקרי הטכניון שינוי דרמטי שיוביל להערכתם להפקת מימן זולה, נקייה ובטוחה מאוד. לדבריהם, התהליך החדש עשוי לחולל מהפכה בייצור מימן, תוך התבססות על אנרגיה נקייה ומתחדשת כגון אנרגיה סולרית או אנרגיית רוח.

 

החוקרים פיתחו תהליך חדשני וייחודי, E-TAC water splitting (Electrochemical – Thermally-Activated Chemical water splitting), המבוסס על פעולה מחזורית, שבה משתנה לסירוגין ההרכב הכימי של האנודה (האלקטרודה שבה מתרחש תהליך החמצון במערכת). בשלב הראשון, הקתודה (האלקטרודה שבה מתרחש תהליך החיזור במערכת) מייצרת מימן והאנודה משנה את הרכבה הכימי בלי לייצר חמצן; בשלב השני הקתודה פסיבית ואילו האנודה מייצרת חמצן. בסוף השלב השני חוזרת האנודה למצבה ההתחלתי והמחזור מתחיל מחדש. על סמך טכנולוגיה זו הקימו החוקרים את חברת הסטארטאפ H2Pro העוסקת בתרגומה ליישום מסחרי.

 

קבוצת המחקר. מימין לשמאל: ד"ר חן דותן, פרופ' אבנר רוטשילד, אביגיל לנדמן ופרופ' גדעון גרדר
קבוצת המחקר. מימין לשמאל: ד”ר חן דותן, פרופ’ אבנר רוטשילד, אביגיל לנדמן ופרופ’ גדעון גרדר. קרדיט צילום: חן גלילי, דוברות הטכניון

ברחבי העולם מיוצרות בכל שנה כמויות מימן עצומות: כ-65 מיליון טונות בשווי של כ-130 מיליארד דולר, השקולות מבחינה אנרגטית לכ-9 אקסה-ג’אול (EJ) שהם כ-2,600 טרה-וואט-שעה (TWh). כמויות אלה גדלות בהתמדה וצפויות לשלש את עצמן ב-20 השנים הבאות; בשנת 2030 צפויה צריכת המימן לעמוד על 14 אקסה-ג’אול ובשנת 2040 על 28.

 

כ-53% מהמימן המופק כיום משמש בייצור אמוניה לדשנים ולחומרים אחרים, 20% משמש בבתי זיקוק, 7% בייצור מתנול ו-20% בשימושים אחרים. בעתיד צפוי המימן לשמש ביישומים נוספים, שחלקם נמצאים בשלבי פיתוח מואצים: מימן כדלק לכלי רכב חשמליים המכילים תאי דלק (FCEV), מימן כדלק לאגירת אנרגיה ממקורות מתחדשים (P2G), מימן חימום תעשייתי וביתי ועוד.

 

כ-99% מהמימן המופק כיום מקורו בדלק מחצבי (fossil fuel), והפקתו כרוכה בתהליכים הפולטים לאטמוספרה פחמן דו-חמצני (CO2) – גז שנוכחותו העודפת באטמוספרה מאיצה את ההתחממות הגלובלית. המימן מופק בעיקר על ידי חילוצו מגז טבעי (SMR) בתהליך המשחרר כ-10 טונות CO2 על כל טונה של מימן ולכן אחראי לכ-2% מסך פליטות ה-CO2 לאטמוספירה שמקורן בפעילות אנושית. זה הרקע לצורך הדחוף בחלופות נקיות, וידידותיות יותר לסביבה, של הפקת מימן.

 

החלופה העיקרית הקיימת כיום להפקת מימן באופן נקי וללא פליטות CO2 היא אלקטרוליזה של מים (water electrolysis). בתהליך זה מוצבות שתי אלקטרודות, אנודה וקתודה, במים המועשרים בבסיס או בחומצה המגבירים את מוליכותם החשמלית. בתגובה להעברת זרם חשמלי בין האלקטרודות מתפרקות מולקולות המים (H2O) ליסודותיהן הכימיים ומשחררות גז מימן (H2) בקרבת הקתודה וחמצן (O2) בקרבת האנודה. התהליך כולו מתרחש בתא אטום המחולק לשניים – בחלק אחד נאסף המימן ובחלק אחר החמצן.

 

הפקת מימן בדרכים נקיות, בניגוד להפקתו מגז טבעי בתהליך SMR, נתקלת בשורה של אתגרים טכנולוגיים. אחד מהם הוא הפסד אנרגטי משמעותי; הנצילות האנרגטית של תהליכי אלקטרוליזה כיום עומדת על כ- 75% בלבד, והמשמעות: צריכה גבוהה של חשמל. קושי נוסף קשור בממברנה המחלקת את תא האלקטרוליזה לשניים; ממברנה זו, הנדרשת כדי לאסוף את המימן בצד אחד ואת החמצן בצד השני, מגבילה את הלחץ בתא האלקטרוליזה ל-10 עד 30 אטמוספרות בשעה שבמרבית היישומים נדרש לחץ של מאות אטמוספרות; לדוגמה, בכלי רכב חשמליים המכילים תאי דלק נדרשת דחיסה של המימן בלחץ של 700 אטמוספרות. כיום מוגבר הלחץ באמצעות מדחסים גדולים ויקרים המסבכים את התפעול ומגדילים את עלויות ההתקנה והאחזקה של המערכת. בנוסף, נוכחותה של הממברנה מסבכת את הרכבת מתקן הייצור וכך מעלה מהותית את מחירו. מעבר לכך הממברנה דורשת תחזוקה והחלפה תקופתית.

 

לטכנולוגיה E-TAC water splitting כמה יתרונות משמעותיים על פני אלקטרוליזה:

  1. הפרדה כרונולוגית מוחלטת בין ייצור המימן לייצור החמצן – שני תהליכים אלה קורים בזמנים שונים. ההשלכות:
  • ביטול הצורך בממברנה החוצצת בין האנודה לקתודה בתא האלקטרוליזה. מדובר בחיסכון משמעותי בהשוואה לאלקטרוליזה, שכן הממברנה יקרה, מסבכת את תהליך הייצור ומצריכה שימוש במים מזוקקים ותחזוקה שוטפת כדי שלא תיסתם.
  • תהליך בטוח, המונע את הסיכון שבמפגש הנפיץ בין החמצן למימן, מפגש העלול להיווצר בתהליך האלקטרוליזה הרגיל במקרה שהממברנה המפרידה אינה אטומה לגמרי.
  • השימוש הנוכחי בממברנות מגביל כאמור את הלחץ בתהליך הפקת המימן. הטכנולוגיה שפותחה בטכניון מייתרת את הממברנה וכך מאפשרת דחיסה של המימן כבר בשלב ההפקה. כך נחסכות גם חלק מהעלויות הגדולות הכרוכות בדחיסה מאוחרת של המימן.

 

  1. בתהליך החדש נוצר החמצן בתגובה כימית ספונטנית בין האנודה הטעונה והמים, ללא הפעלת זרם חשמלי באותו שלב. תגובה זו חוסכת את הצורך בחשמל בשלב יצירת החמצן ומגדילה את נצילות התהליך מכ-75% בשיטות המקובלות לנצילות אנרגטית חסרת תקדים: 98.7%.

 

  1. טכנולוגיית E-TAC צפויה להוזיל לא רק את עלויות התפעול אלא גם את עלות הציוד.
    ב-H2Pro מעריכים שעלות ציוד להפקת מימן בתהליך ה-E-TAC תהיה כמחצית מעלותו של ציוד המבוסס על טכנולוגיות קיימות. ההערכות הראשוניות מצביעות על אפשרות לייצור מימן בקנה מידה תעשייתי בעלויות ייצור תחרותיות בהשוואה להפקה מגז טבעי בתהליך SMR, וזאת כאמור ללא פליטת CO2 לאטמוספירה.

מפתחי הטכנולוגיה, פרופ’ גדעון גרדר, פרופ’ אבנר רוטשילד וד”ר חן דותן, חברו למייסדי חברת Viber והקימו את חברת H2Pro, העוסקת במסחור הטכנולוגיה החדשה. החברה, הפועלת בפארק התעשייה בקיסריה, קיבלה רישיון בלעדי למסחור הטכנולוגיה מ- 3T יחידת המסחור של מוסד הטכניון וגייסה הון התחלתי ראשוני בהובלת חברת יונדאי. החברה מעסיקה יותר מ-20 עובדים, רובם בוגרי הטכניון.

המחקר נתמך על ידי תוכנית האנרגיה ע”ש ננסי וסטיבן גרנד בטכניון (GTEP), תרומת אד סאטל, קרן אדליס, משרד האנרגיה והנציבות האירופית (תוכנית המסגרת 2020 של האיחוד האירופי).

 

למאמר המלא ב-Nature Energy  לחצו כאן

3. פרופ' אבנר רוטשילד
פרופ’ אבנר רוטשילד. קרדיט צילום: חן גלילי, דוברות הטכניון
 פרופ' גדעון גרדר
פרופ’ גדעון גרדר. קרדיט צילום: חן גלילי, דוברות הטכניון
 הדוקטורנטית אביגיל לנדמן
הדוקטורנטית אביגיל לנדמן. קרדיט צילום: חן גלילי, דוברות הטכניון
ד"ר חן דותן
ד”ר חן דותן. קרדיט צילום: חן גלילי, דוברות הטכניון
איור של פיצול מים בתהליך קונבנציונלי (משמאל) ובתהליך ה-ETAC (מימין). בפיצול מים קונבנציונלי המימן והחמצן מיוצרים בו-זמנית ובאותו התא, ומופרדים על ידי ממברנה. לעומת זאת, בתהליך ה-ETAC המימן והחמצן מיוצרים בשני שלבים שונים: בשלב הראשון, המתרחש בטמפרטורה נמוכה, רק מימן מיוצר באופן אלקטרוכימי; בשלב השני, המתרחש בטמפרטורה גבוהה, רק חמצן מיוצר באופן כימי וספונטני.
איור של פיצול מים בתהליך קונבנציונלי (משמאל) ובתהליך ה-ETAC (מימין). בפיצול מים קונבנציונלי המימן והחמצן מיוצרים בו-זמנית ובאותו התא, ומופרדים על ידי ממברנה. לעומת זאת, בתהליך ה-ETAC המימן והחמצן מיוצרים בשני שלבים שונים: בשלב הראשון, המתרחש בטמפרטורה נמוכה, רק מימן מיוצר באופן אלקטרוכימי; בשלב השני, המתרחש בטמפרטורה גבוהה, רק חמצן מיוצר באופן כימי וספונטני.
"פיצול מים" – אילוסטרציה. בתהליך ה-ETAC מפצלים את המים למימן ולחמצן בשני שלבים שונים וביעילות גבוהה של 98.7%. )קרדיט איור : תם קריב(
“פיצול מים” – אילוסטרציה. בתהליך ה-ETAC מפצלים את המים למימן ולחמצן בשני שלבים שונים וביעילות גבוהה של 98.7%. )קרדיט איור : תם קריב(

לסרטון המסביר את המחקר

מדענים בטכניון הצליחו לפגוע במנגנון ההגנה של חיידקי סלמונלה בעזרת חומרים שפותחו במקור כנגד מחלת האלצהיימר

בכוונתם להמשיך במחקר ולפתח טיפולים חדשניים שינטרלו חיידקים אלימים העמידים לאנטיביוטיקה

 פרופ'-חבר מיטל לנדאו (משמאל) עם הדוקטורנט ניר סלינס
פרופ’-חבר מיטל לנדאו (משמאל) עם הדוקטורנט ניר סלינס. קרדיט: רמי שלוש, דוברות הטכניון

פרופ’-חבר מיטל לנדאו והדוקטורנט ניר סלינס מהפקולטה לביולוגיה בטכניון הצליחו לפגוע ביצירה של ביופילם של חיידקי סלמונלה. ביופילם הוא קרום עמיד המהווה בעיה רפואית וסביבתית חמורה משום שהוא מגן על החיידקים ומאפשר להם להיצמד לרקמות, לצינורות, למשטחים, למכשור רפואי ועוד. תגליתם של החוקרים צפויה להוביל לפיתוח טיפולים חדשניים שיעכבו עמידות לאנטיביוטיקה בקרב חיידקים אלימים.

בשנת 2017 פרסם צוות המחקר של פרופ”ח לנדאו, בכתב העת Science, גילויים חדשים על הסטפילוקוק הזהוב – חיידק אלים במיוחד שפיתח עמידות לזנים רבים של אנטיביוטיקה ואחראי לחלק ניכר ממקרי ההדבקה המתרחשים בבתי חולים ובקהילה. החוקרים גילו כי חיידק זה, התוקף את תאיו של האורגניזם ואת מערכת החיסון שלו, עושה זאת בין השאר באמצעות סיבים ייחודיים שהוא מפריש. סיבים רעילים אלה מזכירים עמילואידים, חלבונים הקשורים למחלות נוירודגנרטיביות כגון אלצהיימר ופרקינסון, אך שונים מהם מבחינה מבנית. במאמר שהתפרסם ב-2018 בכתב העת Nature Communication גילו סלינס ועמיתיו בצוות המחקר כי חלבונים מאותה משפחה של הסיב הרעיל יוצרים מבנים עמילואידים יציבים מאוד, המחזיקים מעמד בתנאים קשים מאוד ומגינים על החיידק. פרופ’ לנדאו הביעה תקווה שגילויים אלו יובילו לטיפולים חדשים שיפגעו בסיבים ויפחיתו משמעותית את האגרסיביות של זיהומים קשים שגורם הסטפילוקוק הזהוב.

כעת, במחקר המתפרסם בכתב העת PLoS Pathogens, גילו חוקרי הטכניון כי פגיעה בסיבים העמילואידים שיוצרים חיידקי אי-קולי וסלמונלה, המעורבים בזיהומי מזון, פוגעת במנגנוני ההגנה של החיידקים וביכולתם להיצמד לרקמות ולמכשור רפואי. זאת באמצעות ייעוד-מחדש (Repurposing) של חומרים שכבר עברו ניסויים קליניים לטיפול באלצהיימר. יתרונו הגדול של ייעוד-מחדש בכך שתהליך האישור קצר וזול הרבה יותר מזה של תרופה חדשה.

החומרים שנבדקו על חיידק הסלמונלה אינם פוגעים בחיידק באופן ישיר; הם פוגעים בביופילם, שהוא כאמור קרום עמיד המגן על החיידקים מפני חומרים המסכנים אותם, לרבות תרופות אנטיביוטיות. החוקרים מעריכים שהפגיעה בביופילם לא תוביל להתפתחות עמידות כיוון שהיא אינה מאלצת את החיידקים להגן על חייהם. זאת בניגוד לתרופות אנטיביוטיות, שהשימוש בהן גורם להגברת עמידותו של החיידק ואלימותו.

המחקר אמנם התמקד בחיידקי סלמונלה ואי-קולי, הקשורים בזיהומי מזון, אבל החוקרים מקווים כי הוא יועיל גם במאבק בחיידקים אחרים ובהם הסטפילוקוק הזהוב. בהמשך מחקר הדוקטורט שלו יתמקד סלינס בפיתוח חומרים אנטיבקטריאליים יציבים ובסריקת מולקולות קטנות שיעכבו את יצירת הסיבים העמילואידיים בחיידקים. הוא מקווה כי פיתוחים כאלה יאיצו את המאבק החיוני בהתפתחות זנים אלימים של חיידקים העמידים לאנטיביוטיקה.

במחקר שותפים חוקרים מהמכון למערכות מורכבות ביוליך ובדיסלדורף, גרמניה. בטכניון סייעו בעבודה זו המרכז לביולוגיה מבנית, המרכז למדעי החיים וההנדסה ע”ש לורי לוקיי, המרכז למיקרוסקופיית אלקטרונים (מיק”א) והמרכז למיקרוסקופיית אלקטרונים של חומר רך במכון ראסל ברי לננוטכנולוגיה.

פרופ’-חבר מיטל לנדאו הצטרפה לסגל הטכניון אחרי פוסט-דוקטורט באוניברסיטת קליפורניה לוס אנג’לס (UCLA), שם התמחתה במיקרו-קריסטלוגרפיה בקרני X ובעמילואידים הקשורים במחלת אלצהיימר. בספטמבר 2012 היא הקימה בטכניון את המעבדה שלה בפקולטה לביולוגיה.

ניר סלינס השלים בטכניון תואר ראשון בביוכימיה מולקולרית בפקולטה לכימיה ע”ש שוליך וכיום הוא נמצא במסלול ישיר לדוקטורט בפקולטה לביולוגיה.

 

למאמר המלא ב  PLoS Pathogens לחצו כאן

איור - משמאל: המבנה האטומי של מקטע-חלבון שיוצר את סיבי הביופילם באי-קולי ובסלמונלה. מבנה זה דומה מאוד למבנים של סיבים עמילואידיים הקשורים למחלת האלצהיימר, ודמיון מבני זה הוביל לרעיון לפגוע בסיבי הביופילם החיידקי באמצעות החומרים שפותחו נגד סיבי האלצהיימר.  למעלה (בשחור-לבן): תמונות שצולמו במיקרוסקופ אלקטרונים. משמאל נראים סיבים שנוצרים על ידי החלבון החיידקי ומשמשים לבניית הביופילם; מימין מוצגת הפגיעה ביצירת הסיבים כתוצאה מהוספת החומר שפותח נגיד סיבי האלצהיימר (ANK6) למטה (בשחור-אדום): תמונות תלת-ממדיות שצולמו במיקרוסקופ קונפוקלי לאחר צביעה פלורוסנטית אדומה של הביופילם החיידקי. משמאל: צפיפות גבוהה של ביופילם; מימין: ירידה משמעותית בכמות הביופילם בעקבות הוספת החומר ANK6   קרדיט: רמי שלוש, דוברות הטכניון
איור – משמאל: המבנה האטומי של מקטע-חלבון שיוצר את סיבי הביופילם באי-קולי ובסלמונלה. מבנה זה דומה מאוד למבנים של סיבים עמילואידיים הקשורים למחלת האלצהיימר, ודמיון מבני זה הוביל לרעיון לפגוע בסיבי הביופילם החיידקי באמצעות החומרים שפותחו נגד סיבי האלצהיימר.
למעלה (בשחור-לבן): תמונות שצולמו במיקרוסקופ אלקטרונים. משמאל נראים סיבים שנוצרים על ידי החלבון החיידקי ומשמשים לבניית הביופילם; מימין מוצגת הפגיעה ביצירת הסיבים כתוצאה מהוספת החומר שפותח נגיד סיבי האלצהיימר (ANK6)
למטה (בשחור-אדום): תמונות תלת-ממדיות שצולמו במיקרוסקופ קונפוקלי לאחר צביעה פלורוסנטית אדומה של הביופילם החיידקי. משמאל: צפיפות גבוהה של ביופילם; מימין: ירידה משמעותית בכמות הביופילם בעקבות הוספת החומר ANK6

 

 

 

 

 

 

כל ה- YouTube בכפית אחת: אחסון מידע על די-אן-איי

חוקרים בטכניון ובמרכז הבינתחומי הרצליה מציגים ב-Nature Biotechnology קפיצת מדרגה באחסון מידע

 

פרופ' זהר יכיני
פרופ’ זהר יכיני

חוקרים בטכניון ובמרכז הבינתחומי הרצליה הדגימו שיפור משמעותי ביעילות התהליך הנדרש לאחסונו של מידע דיגיטלי בדי-אן-איי. במאמר שפורסם בכתב העת Nature Biotechnology הדגימה הקבוצה אחסון מידע בצפיפות השקולה לאחסון של יותר מ-10 פטה-בייט (מיליון גיגה–בייט) בגרם בודד של די-אן-איי תוך ייעול משמעותי של תהליך הכתיבה. לשם המחשה, צפיפות זו מאפשרת, באופן תאורטי, לאחסן בנפח של כפית את כל המידע השמור ב-Youtube.

את המחקר הוביל תלמיד המחקר ליאון ענבי מהפקולטה למדעי המחשב בטכניון בהנחייתו של פרופ’ זהר יכיני מהפקולטה למדעי המחשב בטכניון ומבית ספר אפי ארזי למדעי המחשב במרכז הבינתחומי הרצליה. המחקר נערך בשיתוף עם מעבדתו של פרופ’ רועי עמית מהפקולטה להנדסת ביוטכנולוגיה ומזון בטכניון.

כמות המידע הדיגיטלי גדלה במהירות עצומה מאז המצאת ההארד-דיסק על ידי IBM בשנות ה-50. אחסונו של מידע זה הפך לאתגר גדול לא רק בהקשר הטכנולוגי אלא גם בהיבט הכלכלי והסביבתי, שכן כיום אחראיות חוות השרתים – מחסני המידע המשרתים את כולנו – לכ-2% מפליטת הפחמן העולמית (שיעור דומה לפליטה המצטברת של כל המטוסים בעולם) ולכ-3% מצריכת החשמל העולמית (יותר מצריכת החשמל של בריטניה כולה). על רקע כל אלה מתפתחת בעשור האחרון גישה טכנולוגית חדשה ומהפכנית: אחסון מידע בדי-אן-איי. טכנולוגיה זו מאפשרת מזעור משמעותי, שמירת המידע לטווח ארוך הרבה יותר (פי אלף) ועלות אנרגטית וכלכלית אפסית.

 

פרופ' רועי עמית
פרופ’ רועי עמית

הרעיון הבסיסי בקידוד מידע על די-אן-איי הוא זה: מולקולת הדי-אן-איי היא שרשרת המורכבת מחוליות הנקראות נוקלאוטידים. הנוקלאוטידים מתחלקים לארבעה סוגים המסומנים באותיות A, C, G ו-T. כדי לאחסן מידע בדי-אן-איי יש לתרגם כל רצף בינארי (המורכב מהסימנים 0 ו-1) לרצף המורכב מאותיות אלה. בשלב הבא מיוצרות, בתהליך הקרוי סינתזה, מולקולות די-אן-איי ממשיות המייצגות את אותם הרצפים. כדי לקרוא את המידע נדרש ריצוף של מולקולות הדי-אן-איי. ריצוף זה מייצר פלט המייצג את רצף הנוקלאוטידים המרכיב כל מולקולה בקלט, ואת הפלט האמור מתרגמים לרצף בינארי המייצג את ההודעה המקורית שקודדנו. הטכנולוגיות המודרניות מאפשרות סינתזה של אלפי סדרות נוקלאוטידים שונות במקביל.

אחסון על די-אן-איי הוא אתגר טכנולוגי מורכב מאוד. בתחום קריאת המידע (ריצוף) התרחשה התקדמות עצומה בעקבות מהפכת הגנום, אולם בכתיבת המידע ישנם עדיין קשיים טכנולוגיים משמעותיים. מכאן חשיבותה של פריצת הדרך שהושגה על ידי חוקרי הטכניון והמרכז הבינתחומי הרצליה ומאפשרת: (1) הגדלה של מספר האותיות המשמשות לקידוד המידע (מעבר ל-4 האותיות המקוריות); (2) הפחתה משמעותית בסבבי הסינתזה הנדרשים לאגירת המידע בדי-אן-איי; (3) שיפור מנגנון תיקון השגיאות בקוד.

הדי-אן-איי הטבעי מורכב כאמור מארבע אבני בניין, הן ארבע האותיות A, C, G ו-T . צוות החוקרים הגדיל את מספר האותיות לשימוש בפועל, כשכל אות חדשה מהווה צירוף ייחודי של האותיות המקוריות. הרעיון דומה לייצור של צבעים חדשים על ידי ערבוב ייחודי של צבעי בסיס. הגדלת מספר האותיות מאפשר לקודד יותר מידע בכל עמדה ברצף של מולקולות הדי-אן-איי. לדברי פרופ’ יכיני, “בתהליכי הסינתזה והריצוף הנהוגים כיום מתקיימת יתירות מידע מובנית (redundancy), כיוון שכל מולקולה מיוצרת במספר גדול של עותקים ונקראת במספר גדול של עותקים במהלך הריצוף. הטכנולוגיה שפיתחנו מנצלת את היתירות הזאת להגדלת מספר האותיות האפקטיבי הרבה מעל ל-4 האותיות המקוריות, וכך מאפשרת לנו לקודד כל יחידת מידע בפחות מחזורי סינתזה.”

הסטודנט ליאון ענבי
הסטודנט ליאון ענבי

החוקרים הצליחו להפחית ב-20% את מספר סבבי הסינתזה הנדרשים ליחידת מידע. יתר על כן, החוקרים הראו כי אפשר יהיה להפחית בעתיד את מספר סבבי הסינתזה ב-75% ללא מאמצי פיתוח משמעותיים. פירוש הדבר הוא שתהליך האחסון יהיה מהיר יותר ויקר פחות. “בעבודה הזאת יישמנו בצורה מעשית קידוד מידע ביעילות סינתזה הגדולה בעשרות אחוזים בהשוואה לקידוד המקובל,” מסביר פרופ’ עמית. “המחקר כלל יישום בפועל של שיטת הקידוד החדשה לשם אחסון מידע בנפח גדול על מולקולות די-אן-איי ושחזורו לשם בדיקת התהליך.” ואכן, על אחד המדפים במעבדתו של פרופ’ עמית בטכניון מונחת מבחנה קטנה המכילה בתוכה כ-10 ננוגרם (מיליארדית הגרם) של די-אן-איי, המקודדים אלפי עותקים של התנ”ך בגירסה דו-לשונית.

קבוצת המחקר פיתחה מנגנון מתקדם המאפשר להתגבר על שגיאות שהן חלק בלתי נפרד מתהליך ביולוגי-פיזיקלי כמו זה המתרחש כאן. חלק מרצף הדי-אן-איי של המולקולות המאחסנות את המידע, שתוכננו על יד ליאון ענבי ופרופ’ יכיני, משמש לצורך מנגנון תיקון השגיאות האמור. לדברי ליאון ענבי, “בזכות שימוש בקודים לתיקון שגיאות, המותאמים לקידוד הייחודי שיצרנו, יכולנו לבצע קידוד יעיל במיוחד ולשחזר את המידע בהצלחה. כאשר עובדים במערכת המורכבת ממיליוני חלקים (מולקולות), מתרחשים גם אירועים נדירים ביותר (אירועים של אחד למיליון), העלולים לשבש את הקריאה. הקידוד המוקפד איפשר לנו להתגבר על בעיות אלה.”

החוקרים מציינים כי “לטכנולוגיה שהוצגה במאמר יש פוטנציאל לייעל תהליכים נוספים בביולוגיה סינתטית ובביוטכנולוגיה. אנו מאמינים שבשנים הקרובות נראה עלייה משמעותית בשימוש בדי-אן-איי סינתטי במחקר ובתעשייה”.

הדי-אן-איי המלאכותי ששימש את החוקרים ותוכנן על ידי הקבוצה יוצר על ידי חברת Twist Bioscience האמריקאית, המעסיקה גם קבוצת פיתוח בתל אביב, ורוצף במרכז הגנומי של הטכניון. המחקר נתמך חלקית על ידי תוכנית המסגרת Horizon 2020 של האיחוד האירופי. ליאון ענבי נתמך על ידי מלגת אדמס של האקדמיה הישראלית למדעים. במחקר השתתפו גם ד”ר אורנה עטאר ותלמידת המחקר ענבל וקנין.

למאמר המלא ב- Nature Biotechnology   לחצו כאן

קבוצת המחקר. מימין לשמאל: פרופ' רועי עמית, ענבל וקנין, ליאון ענבי ופרופ' זהר יכיני
קבוצת המחקר. מימין לשמאל: פרופ’ רועי עמית, ענבל וקנין, ליאון ענבי ופרופ’ זהר יכיני

 

 

מהנדסת רקמות

פרופ’ שולמית לבנברג היא דיקנית הפקולטה להנדסה ביו-רפואית ומומחית בעלת שם עולמי בתחום הנדסת הרקמות. בהרצאתה ב-TEDxTelAviv היא מספרת על פיתוח רקמות ואיברים המיועדים להשתלה, על גידול בשר במעבדה ללא פגיעה בחיות, ועל טכנולוגיה חדשה לשיקום חוט שדרה פגוע.

המצטיינת ברפואה

ד"ר נורית פיינשטיין
ד”ר נורית פיינשטיין

ד”ר נורית פיינשטיין, בוגרת הפקולטה לרפואה ע”ש רפפורט בטכניון, זכתה בפרס עבודת הגמר המצטיינת בפקולטה יחד עם המנחה שלה בעבודת הגמר, פרופ’ פלג חסון. היא בוגרת מחזור מ”ו של הפקולטה לרפואה ועתידה להתחיל בקרוב התמחות ברפואת ילדים. ד”ר פיינשטיין, 30, מתגוררת בקיבוץ מעלה החמישה ואם לילד.

עבודת הגמר של פיינשטיין מתמקדת באנזים ליזיל אוקסידז (Lox), שמעורב  בבניית רקמות חיבור בגוף וחיוני להתפתחות תקינה של המערכת הקרדיווסקולרית ומערכת הנשימה. במעבדתו של פרופ’ חסון התגלה כי הוא ממלא תפקיד חשוב גם בבניית סיבי שריר.

במחקר הזוכה אופיינו עכברים שהונדסו לבטא ביתר את האנזים Lox, ונבחנה השפעת ביטוי היתר על רגנרציית שריר, תהליך אשר נפגע קשות במחלה דושן. החוקרים הראו כי בעכבר שמבטא ביתר את Lox מתפתחת רקמת שריר תקינה מורפולוגית, ללא שינויים בהתארגנות מרכיבי רקמת החיבור וסידור הסיבים ביחס לעכבר נורמלי (לא מהונדס). מכאן הם הסיקו כי ביטוי יתר של Lox  לבדו לא יוצר את הפנוטיפ האופייני של שריר פיברוטי כמו זה הנצפה במחלת הדושן.

בשלב השני של המחקר נבחנה השפעת עודף Lox על ריפוי השריר והתחדשותו לאחר פציעה, ונמצא כי ביטוי יתר של Lox  מאיץ את תהליך הרגנרציה של השריר לאחר פציעתו. בהמשך, בעבודה עם תרביות תאים, תוצאות ראשוניות הראו שביטוי יתר של Lox  מזרז את תהליך הפרוליפרציה והן את תהליך הדיפרנציאציה של תאים לכדי סיבי שריר, דבר שיכול להסביר את תהליך הרגנרציה המזורז שנצפה ברקמת השריר השלמה.

במקום השני זכתה ד”ר הילין קרנר לביא על מחקרה בהנחיית פרופ’ ערן בן-אריה. המחקר עסק בהשפעת תוכנית לטיפול משלים על איכות השינה בקרב חולות סרטן העוברות כימותרפיה. במקום השלישי זכתה ד”ר מרי נסיר, בהנחיית פרופ’ מוסטפא סומרי, בנושא שימוש בתרופות נוגדות כאב (פרצטמול) בטיפולי שיניים.

עבודת הגמר בפקולטה לרפואה היא חלק מלימודי הרפואה (MD) ותנאי לתחילת הסטאז’ בבתי החולים. בכל שנה מכנסת הפקולטה ועדה הבוחנת את עבודות הגמר ובוחרת עבודה מצטיינת. הפרס הכספי ותעודת ההוקרה ניתנים לזוכה ולמנחה העבודה בטקס קבלת התואר. השנה התקיים הטקס ב-26 ביוני.

פרופ' פלג חסון
פרופ’ פלג חסון