{"id":84209,"date":"2017-02-14T16:01:05","date_gmt":"2017-02-14T14:01:05","guid":{"rendered":"https:\/\/www.technion.ac.il\/blog\/sperm-egg-fusion-proteins-and-zika\/"},"modified":"2017-02-14T16:01:05","modified_gmt":"2017-02-14T14:01:05","slug":"sperm-egg-fusion-proteins-and-zika","status":"publish","type":"post","link":"https:\/\/www.technion.ac.il\/en\/blog\/sperm-egg-fusion-proteins-and-zika\/","title":{"rendered":"Sperm-Egg Fusion Proteins and Zika"},"content":{"rendered":"
Sperm-Egg Fusion Proteins Have Same Structure as Those Used by Zika and Other Viruses to Invade Healthy Cells<\/b><\/span><\/p>\n HAIFA, ISRAEL (February 14, 2017) \u2013 The protein that helps the sperm and egg fuse together in sexual reproduction can also fuse regular cells together. Recent findings by a team of biomedical researchers from the Technion-Israel Institute of Technology, Argentina, Uruguay and the U.S. show this protein is part of a larger family of proteins that helps other cells bind together to create larger organs, and which also allows viruses like Zika and Dengue to invade healthy cells.<\/strong><\/p>\n For every sexually reproducing organism, sperm and egg fusion is the first step in the generation of a new individual. This process has been studied for more than 100 years in many organisms including humans, mice, insects, plants, sea urchins and even fungi. But the identity of the molecular machineries that mediate sperm and egg fusion remained unknown.<\/span><\/p>\n Now, the team led by Dr. Benjamin Podbilewicz, of the Technion Faculty of Biology, and Pablo S. Aguilar of Universidad Nacional de San Martin in Argentina, has demonstrated that the protein HAP2 \u2013 a long known player in sperm-egg fusion \u2013 is a protein that mediates a broad range of cell-cell fusion. <\/span><\/p>\n HAP2 is found in plants, protists (e.g. algae, protozoa, and slime molds) and invertebrates, and is therefore considered an ancestral protein present at the origins of the first eukaryotic cells (cells with real nuclei). However, a closer look at HAP2 led the researchers to conclude that HAP2\u2019s roots are even older. Structural and phylogenetic analysis of HAP2 proteins revealed they are homologous to proteins used by viruses such as Zika and Dengue to fuse viral membrane to the membrane of the cell they invade.<\/span><\/p>\n According to the researchers, this means HAP2, FF and viral fusion proteins constitute a superfamily of membrane fusion proteins, which the authors named Fusexins (fusion proteins essential for sexual reproduction and exoplasmic merger of plasma membranes). <\/span><\/p>\n \u201cFusexins are fascinating machines that keep a structural core diversified to execute cell membrane fusion in very different contexts,\u201d says Prof. Podbilewicz. \u201cUnderstanding the different structure-function relationships of fusexins will enable scientists to rationally manipulate cell-cell fusion in fertilization and tissue development. The added and very timely benefit is that it provides us greater understanding of how Zika and other viruses cause diseases in their target hosts.\u201d<\/span><\/p>\n<\/a>
\n