{"id":84085,"date":"2016-02-21T17:41:56","date_gmt":"2016-02-21T15:41:56","guid":{"rendered":"https:\/\/www.technion.ac.il\/blog\/light-wave-compression-for-microscopy\/"},"modified":"2016-02-21T17:41:56","modified_gmt":"2016-02-21T15:41:56","slug":"light-wave-compression-for-microscopy","status":"publish","type":"post","link":"https:\/\/www.technion.ac.il\/en\/blog\/light-wave-compression-for-microscopy\/","title":{"rendered":"Light Wave Compression For Microscopy"},"content":{"rendered":"
Researchers at the Technion-Israel Institute of Technology have developed technology to compress light wavelengths fourfold, providing a way to focus light beyond normal wavelengths to reach nanoscales (a nanometer is a billionth of a meter) in length.<\/span><\/p>\n Using the metal-oxide-silicon (MOS) platform technology they developed for reducing the former \u201cdiffraction limit\u201d of light wave length from 671 nanometers to 65 nanometers, a level at which \u201csuper-resolution\u201d is possible, the researchers have made it possible to greatly advance the resolution quality for potential applications ranging from medical imaging to nanolithography (printing tiny electronic components).<\/span><\/p>\n \u201cWith increased brightness and resolution, microscopes will have increased accuracy at the molecular level,\u201d says Prof. Guy Bartal of the Technion Department of Electrical Engineering. Nanometer-scale structures, such as the lab-on-a-chip device that can integrate several laboratory functions on a single chip, can be fabricated easier and at lower cost using lasers with shortened wavelengths. Bioimaging can also become more accurate and detailed with improved light resolution. \u00a0<\/span><\/p>\n A paper outlining the characteristics and potential applications of the new platform was published in a recent issue of <\/span>Optica<\/i><\/a><\/strong><\/span> (Vol 2 No. 2 pp 1045-1048), <\/a><\/strong><\/span>a publication of the Optical Society of America.\u00a0\u00a0<\/span><\/p>\n \u201cThe metal-oxide-silicon (MOS) platform we developed gives us the ability to shape, focus and control optical waves beyond their normal wavelengths,\u201d said Prof. Bartal, who explained that as light wavelength is reduced, resolution becomes greater. \u201cThis means we can control the resolution and brightness of our focus, and also select its type and shape.\u201d<\/span><\/p>\n The team\u2019s super-resolution platform uses ultrathin commercial silicon membranes coated on one side with a thin layer of silicone oxide (Si02) and a metallic layer so as to set the diffraction limit in a controllable way using two-dimensional silicon-based wave guides. (Fig 2) <\/span><\/p>\n Not only does the new platform allow the researchers to successfully pass the diffraction limit, which was previously restricted to half the light\u2019s wavelength, the new technology also \u201cpushes\u201d past that restriction without changing the color of the light.<\/span><\/p>\n \u201cBy providing resolution comparable to state-of-the-art methods, and while keeping the simplicity and flexibility of a diffraction-limited system, we offer the potential to develop a simple, easy-to-fabricate microscopy platform that is compatible with the mature silicon industry,\u201d said Dr. Bergin Gjonaj, a senior researcher in the lab who developed a method to dynamically control the location of the nano-scale focusing.<\/span><\/p>\n The researchers\u2019 ultimate goal is the creation of a more accessible device that is \u201con par\u201d with current super-resolution techniques (which are still expensive, slow or energy-intensive) to make it possible to see biological activities at the molecular level.<\/span><\/p>\n The study was funded in part by the KLA-Tencor Corporation and the Israel Science Foundation (ISF) and supported by the Russell Berrie Nanotechnology Institute and Micro-Nano Fabrication Unit (MNFU) at the Technion-Israel Institute of Technology.<\/span><\/i><\/p>\n Building a Better Microscope. Technion Breakthrough – New Light Wave Compression for Really Seeing at the Molecular Level New silicon platform compresses light waves past their \u2018diffraction limit\u2019 to vastly improve resolution for bio-imaging and nano lithography applications Researchers at the Technion-Israel Institute of Technology have developed technology to compress light wavelengths fourfold, providing a… Continue Reading Light Wave Compression For Microscopy<\/span><\/a><\/p>\n","protected":false},"author":3,"featured_media":0,"comment_status":"open","ping_status":"open","sticky":false,"template":"","format":"standard","meta":{"_acf_changed":false,"footnotes":""},"categories":[24],"tags":[],"class_list":["post-84085","post","type-post","status-publish","format-standard","hentry","category-uncategorized"],"acf":[],"yoast_head":"\n<\/a>